大家好,如果您还对电偶不太了解,没有关系,今天就由本站为大家分享电偶的知识,包括电偶是什么的问题都会给大家分析到,还望可以解决大家的问题,下面我们就开始吧!
由两个电量相等,距离很近的正负电荷所组成的一个总体,称为电偶。正电荷称为电偶的电源,负电荷称为电偶的电穴,其连线称为电偶轴,电偶轴的方向是由电穴指向电源,两极间连线的中点称为电偶中心。
热电偶:热电偶是根据热电效应测量温度的传感器,是温度测量仪表中常用的测温元件.热电偶是两个不同的金属原件焊接在一起,电流通过时会有压差,用压差来显示温度。
热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当哗信热电偶两电极材料固定后,热电动势便是两接点温度t和t0。
扩展资料:电偶必需是由两种性质不同但契合一定要求的导体(或码芦链半导体)材料构成回路。热电偶丈量端和参考端之间必需有温差。
将两种不同资料的导体或半迟孙导体A和B焊接起来,构成一个闭合回路。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因此在回路中构成一个大小的电流,这种现象称为热电效应。热电偶就是应用这一效应来工作的。
参考资料:百度百科---电偶
电偶器全称:光电耦合器。
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
工作原理
在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封弊岩装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
基本工作特性(光敏三极管)
1、共模抑制比很高
在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。
2、输出特性
光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。当IF>0时,在一定的IF作用下,所对应的IC基本上与侍没VCE无关。IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。其测试连线如图2,图中D、C、E三根线分别对应B、C、E极,接在仪器插座上。
3、隔离特性
1.入出间隔离电压Vio(Isolation
Voltage)
光耦合器输入端和输出端之间绝缘耐压值。
2.入出间隔离电容Cio(Isolation
Capacitance):
光耦合器件输入端和输出端之间的电容值
3.入出间隔离电阻Rio:(Isolation
Resistance)
半导体光耦合器输入端和租谈御输出端之间的绝缘电阻值。
4、传输特性:
1.电流传输比光电耦合器CTR(Current
Transfer
Radio)
输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。
2.上升时间Tr
(Rise
Time)&
下降时间Tf(Fall
Time)
光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。
其它参数诸如工作温度、耗散功率等不再一一敷述。[2]
5、光电耦合器可作为线性耦合器使用。
在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。光电耦合器也可工作于开关状态,传输脉冲信号。在传输脉冲信号时,输入信号和输出信号之间存在一定的延迟时间,不同结构的光电耦合器输入、输出延迟时间相差很大。
祝你好运,望采纳。。。
电流是电荷的定向运动形成的,正电荷运动的方向就是电流的方向,单位时间内通过横截面的电量,就叫做电流。
电流的单位是安,用A来表示,电流的分单位有毫安和微安等。1安等于1000毫安,1毫安等于1000微安。
测量电流要用电流表。电流表必须串联在电路中,而不能与用电器并联,也不能不经过用电器直接连在电源上,否枝瞎则电流就会太大,烧坏电猛差空流表,打弯指针。电流表有两个接线柱,接的时候,流入电流表的接线柱是正的接线柱,流出电流表的接线柱是负的接线柱。如果接错,指针的方庆简向就变成了逆时针的方向,损坏电流表。
希望我能帮助你解疑释惑。
电偶是由两个电量相等,距离很近的正负电荷所组成的一个总体。
正电荷称为电偶的电源,负电荷称为电偶的电穴,其连线称为电偶轴,电偶轴的方向是由电穴指向电源,两极间连线的中点称为电偶中心。
实际应用中,电偶一般指两种不同材质的导体互相连接的结构,多数场合下特指热电偶或温差电偶。
热电偶thermocouple:热电偶是根据热电效应测量温度的传感器,是温度测量仪表中常用的测温元让型件.热电偶是两个不同的金属元件焊接在一起,电流通过时会有压差,用压差来显示温度。
当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”。
热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。
热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度t和t0。的函数差。即
这一关系式在实际测温中得到了广泛应用。因为冷端t0恒定,热电偶产生的热电动势只随热端(测量端)温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的。
热电偶测温的基本原理是两种不同成分的材质导体组成闭合回路,当两端存在温度梯度时,回凳姿路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeckeffect)。两种不同成分的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。
在热电偶回路中接入第三种金属材料坦粗猜时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与测量仪表连接用专用补偿导线。
如果你还想了解更多这方面的信息,记得收藏关注本站。
2023-06-26 / 19mb
2023-06-26 / 28mb
2023-06-26 / 26mb
2023-06-26 / 28mb
2023-06-26 / 10MB
2023-06-26 / 26mb